随着产品测试变得越来越复杂,所要求的测量数据也越来越多,*终导致需要更长的测试时间。PR-930 成像色度计是科研级别的,它能提供高分辨率,快速 2D 成像光度和色度测试方案,能缩短测试时间,降低光学测试的成本,它的出现对光色测量领域具有很高的价值。

硬件

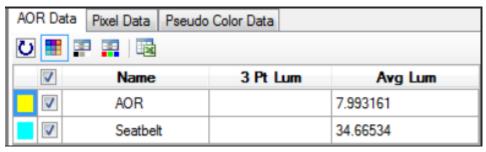
低噪声, TE 制冷探测器 快速切换滤光片轮 USB2.0 接口 高品质物镜(可定制镜头)

测试参数

亮度(平均亮度,*小亮度,*大亮度) CIE1931x, y CIE 1976 u', v' 对比度相关色温(CCT) $L*a*b/L*u*v/\triangle E$ 主波长

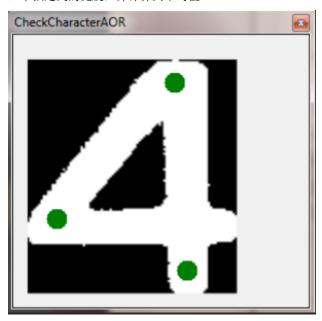
软件

PR-930 的系统软件是 VideoWin3 PRO, 独特的软件设计,即使针对*复杂的分析测试,也能很快速的完成。同时,我们也针对汽车和航空航天领域开发了新的功能,以满足实际需求,例如:


根据 AOR 位置自动测出亮度和色度的平均值 自动测试字符 3 个点的平均值 伪彩色显示亮度,快速识别一致性趋势 自动判定色度测试 Pass/Fail, 软件自动决定 Go/No Go. 自定义测试报告的输出格式

Find Shapes/标定基准点

软件可自动查找测试样品的发光区域,并通过 VideoWin 软件的 "Find Shapes" 功能计算每个发光字符的 平均亮度和色度,大大的减少了测试时间。在下图的例子中,在所找到的形状的平均亮度是 AOR 的 5 倍。



VideoWin 可以定义样品 A 的基准点,当更换为样品和改变 AOR 的相对于基准位置 δ ,所有测试样本的位置会有相同的增量。

自动 3 点字符平均

汽车和航空航天应用通常需要获取一个字母数字字符的亮度,VideoWin 会自动处理三个区域,测量字符三个预定义的亮度,并计算其平均值。

伪彩色显示

用不同颜色代表不同的亮度范围, 能瞬间确定基于用户定义区域的样本性能。

自动 Pass/Fail 测试

用 VideoWin, Pass/Fail 环境可以建成一个数字报告,添加到每次 AOR 的定义中,或者从磁盘中加载 AOR,这也是数字报告的一部分。

定制报告

测试完成后,VideoWin 可以创建定制报告记录测试结果,保存为PDF格式。根据屏幕上显示的内容,记录包括所拍摄的图像,数据表格,Pass/Fail 的信息和1931 CIE 图显示的测量点的色度数据。

Panel One Filter Change

Description: Increased Blue

DUT: PWR SN: X-15

Tester: John Doe

Date: 9/16/2015

Time: 9:20 AM

规格

7201H		
技术规格	TRU8	
CCD 类型	隔行制冷	
CCD 动态范围	12bit	
分辨率	8 百万像素 (3, 296*2, 472)	
像素尺寸(*低分辨率)	5. 5*5. 5 μ m	
*小测量尺寸	27.5*27.5µm (使用 5*5 的相机像素)	
FOV (@1:1 的放大镜头)	18. 13*13. 59mm	
亮度范围	0.005~500cd/m2 (ND-1~ND-3 滤光片可用于高亮度测试)	
亮度精度 (@A 光源)	±2% (@>0.05cd/m²) , ±3% (@0.005-0.05cd/m²)	
亮度精度 (测量样品)	$\pm 1\%$ (@>0.05cd/m²) , $\pm 2\%$ (@0.005-0.05cd/m²)	
亮度重复性 (@A 光源)	\geqslant 0.2% (@>0.05cd/m²) , \geqslant 1% (@0.005-0.05cd/m²)	
色度精度 (@A 光源)	±0.0015 CIE x,y (@>0.05cd/m²) ,	
	± 0.005 CIE x, y (@0.005-0.05cd/m ²)	
色度精度(测量样品)	$\pm 0.0015 \text{ CIE x,y } (@>0.05 \text{cd/m}^2)$,	
	± 0.005 CIE x, y (@0.005-0.05cd/m ²)	
色度重复性	$\pm 0.001 \text{ CIE } x, y \text{ (@>0.05cd/m}^2)$,	
	±0.003 CIE x, y (@0.005-0.05cd/m²)	
接口	USB 2.0	
电源功耗	12V, 3.8A (45.6W)	
电源	100-240VAC 50-60Hz	
重量	3.77 kg	

镜头选型

工作距离 (m)	*小分辨率(mm)	FOV (m)
MS-60	fL=60mm	f/2.8
0. 12	0. 0055	0. 0181*0. 0136
0. 5	0. 0403	0. 1329*0. 0997
2	0. 1778	0. 5861*0. 4396
5	0. 4528	1. 493*1. 119
20	1. 8278	6. 025*4. 518
50	4. 5778	15. 09*11. 32
MS-28	fL=28mm	f/2.8
0.2	0. 0338	0. 1114*0. 0835
0. 5	0. 0927	0. 3056*0. 2292
2	0. 3874	1. 276*0. 9575
5	0. 9766	3. 219*2. 414
20	3. 923	12. 93*9. 698
50	9. 816	32. 35*24. 27