

A new polarizer family

colorPol® polarizers are dichroic glass polarizers. They feature a high contrast ratio and a high transmittance. Standard colorPol® polarizers are available for the UV wavelength range (340 – 420 nm) and for the VIS, NIR and MIR range (440 nm – 5.0 µm).

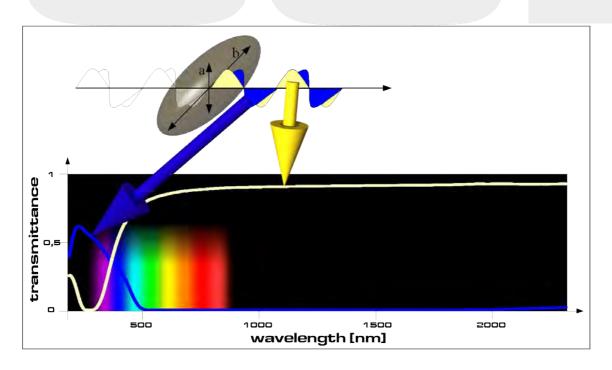
For the range of 1.2 to 2.5 μ m, there are special versions of high transmittance (HT) polarizers with values up to 99%.

colorPol® polarizers

- · are flat like foil polarizers
- can be processed like glass or silicon wafers
- are resistant against UV radiation and chemicals
- have large acceptance angles
- are resistant against temperatures up to +400 °C

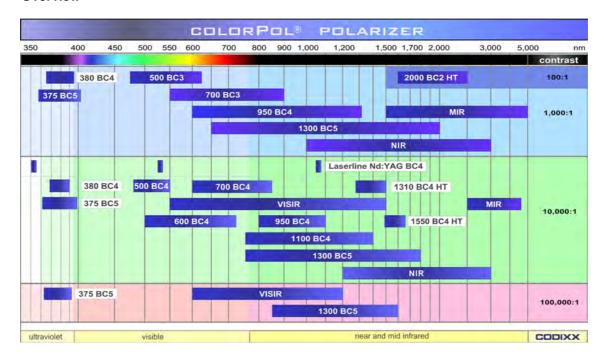
Based on the unique colorPol® technology, CODIXX is the world's first producer of patterned polarizers.

colorPol® S polarizers have arbitrary shaped areas with different directions of polarization. Additionally, the areas can have different spectral characteristics.


Applications

Polarizers are used in a wide range of diverse optical devices to filter or block polarized light, to modulate or reduce brightness, analyze or polarize light and lots more. Because of their excellent properties and outstanding adaptability, colorPol® polarizers can be used in many applications like:

- · Optical sensor devices
- Illumination engineering
- Instrumental filters for laboratory equipment in microscopy, ellipsometry, spectroscopy, polarimetry
- · Photo elasticity, surface inspection
- · Fiber dependent optical isolators
- Optical communications engineering and data storage
- Electro-optical modulators
- High-temperature LC-Displays
- High-temperature LC-Shutter
- · Lyot-Filter


The colorPol® technology

With its unique technology, CODIXX is able to create uniformly oriented prolate silver nano particles in soda lime glass. The nano particles show a strong plasmon absorption, which is selective in reference to polarization and wavelength. Beside the standard products, the flexible technology allows the production of customized polarizers with special spectral characteristics.

Absorption spectra of soda lime glass containing uniformly oriented silver particles

Overview

colorPol® polarizers are characterized by their wavelength range and contrast ratio ($\geq 1,000:1$, $\geq 10,000:1$ and $\geq 100,000:1$, indicated in the product name by C3, C4 and C5 respectively).

The wavelength of maximum polarization is determined by the chosen technology parameters. The peak position can be brought in line with customer's requirements.

The wavelength range of effective polarization spans the UV region (colorPol® UV: 340 to 420 nm), the visible and infrared region (colorPol® VIS, colorPol® IR and colorPol® MIR: 440 nm to 5 μ m).

Standard dimensions range from $5 \times 5 \text{ mm}^2$ up to $60 \times 100 \text{ mm}^2$. Various thicknesses are available on special request, ranging between 0.2 to 0.5 mm for the raw and 0.8 - 10.0 mm for the laminated colorPol® polarizers.

Other dimensions and shapes are available on request.

AR-coatings:

colorPol® polarizers can be delivered with AR-coatings.

CODIXX offers sample sets of its polarizers for evaluation at an attractive price. Sample sets are customized compilations of either 4 or 6 polarizers out of the colorPol standard or HT series with dimension of 10 x 10 mm². In one sample set, the maximum quantity of filters with the same type is limited to 2 pieces.

The shipment will be done within one working day after ordering.

Standard polarizers

colorPol® type	Wavelength range [nm]	Transmittance [%]	Contrast ratio k_1 : k_2^{-1}	Thickness [µm]	Dimension [mm²]
UV 375 BC5	362-392 360-397 357-403	>40-47 >40-48 >39-48	>100,000:1 >10,000:1 >1,000:1	220±50	<=100x50
UV 380 BC4	372-388 369-390 365-395	>52-57 >52-58 >51-59	>100,000:1 >10,000:1 >1,000:1	220±50	<=100x50
VIS 500 BC3	475-625	>55-81	>1,000:1	280±50	<=100x60
VIS 500 BC4	480-550	>58-76	>10,000:1	280±50	<=100x60
VIS 600 BC4	500-720	>60-84	>10,000:1	280±50	<=100x60
VIS 700 BC3	550-900	>77-86	>1,000:1	220±50	<=100x50
VIS 700 BC4	600-850 600-1,000	>78-87 >78-88	>10,000:1 >1,000:1	220±50	<=100x50
VISIR	600-1,200 550-1,500	>67-84 >57-85	>100,000:1 >10,000:1	260±50	<=100x60
IR 950 BC4	800-1,100 600-1,320	>85-87 >80-88	>10,000:1 >1,000:1	220±50	<=100x50
IR 1100 BC4	900-1,200 750-1,400 650-1,700	>85-87 >83-87 >80-88	>100,000:1 >10,000:1 >1,000:1	220±50	<=100x50
IR 1300 BC5	850-1,600 750-1,800 650-2,000	>82-86 >80-87 >76-87	>100,000:1 >10,000:1 >1,000:1	220±50	<=100x50
Laserline Nd:YAG BC4	at 355 nm at 532 nm at 1,064 nm	>37 >50 >79	>10,000:1	270±50	<=100x60
NIR	1,000-2,700 2,700-3,000	>77 >70	>10,000:1 1,200-3,000nm >1,000:1 1,000-3,000nm	250±65	<=100x60
MIR	2,000-4,500 1,500-5,000	>65-90 >35-90	>10,000:1 >1,000:1	200±50	<=100x50

Contrast ratios >100,000:1, other thicknesses, shapes or dimensions on request. Reflection losses can be minimized by anti-reflection coatings. AR-coatings are available for different wavelength ranges as V-coating or wide-band version.

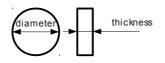
High transmittance polarizers

High transmittance polarizers offer a low insertion loss and high contrast ratios within the given spectral range. They are available for the spectral range of 1.2 - 2.5 μm .

colorPol® type	Wavelength range [nm]	Transmittance [%]	Contrast ratio k ₁ : k ₂ 1)	Thickness [µm]	Dimension [mm²]
IR 1310 BC4 T2 HT IR 1310 BC4 HT IR 1310 BC4 T5 HT	1,280-1,500	>88.0-90.0	>10,000:1	200 ± 50 250 ± 50 500 ± 50	<=100x50 <=100x60 <=100x28
IR 1310 BC4 T2 HT C1310 IR 1310 BC4 HT C1310 IR 1310 BC4 T5 HT C1310	1,280-1,500	>96.0-98.0 >97.0 at 1,310 nm	>10,000:1	200 ± 50 250 ± 50 500 ± 50	<=100x50 <=100x60 <=100x28
IR 1550 BC4 T2 HT IR 1550 BC4 HT IR 1550 BC4 T5 HT	1,480-1,650	>89.0-91.0	>10,000:1	200 ± 50 250 ± 50 500 ± 50	<=100x50 <=100x60 <=100x28
IR 1550 BC4 T2 HT C1550 IR 1550 BC4 HT C1550 IR 1550 BC4 T5 HT C1550	1,480-1,650	>97.0-98.5 >98.0 at 1,550 nm	>10,000:1	200 ± 50 250 ± 50 500 ± 50	<=100x50 <=100x60 <=100x28
IR 2000 BC2 HT	1,600-2,500	>90.0	>100:1	220 ± 50	<=100x50
IR 2000 BC2 HT CW06	1,600-2,500	>96.0	>100:1	220 ± 50	<=100x50

 $^{^{1)}}$ The contrast ratio is defined to be k_1/k_2 , where k_1 is the transmittance beam passing the filter and k_2 is the transmittance of a polarized beam blocked by the filter.

Standard round polarizers


colorPol® type	Waveleng	th range [nm] with o	contrast ratio 1)	Filter	thickness
	>1,000:1	>10,000:1	>100,000:1	unlaminated	laminated
UV 375 BC5	357-403	360-397	362-392	220 ± 50µm	2.0 ± 0.2mm
	k1> 39-48%	k1> 40-48%	k1> 40-47%		
UV 380 BC4	365-395	369-390	372-388	220 ± 50µm	2.0 ± 0.2mm
	k ₁ > 51-59%	k ₁ > 52-58%	k ₁ > 52-57%		
VIS 500 BC3	475-625			280 ± 50µm	2.0 ± 0.2mm
\ // O = 0.0 D O O O O O O	k ₁ > 55-81%			200 . 50	22.22
VIS 500 BC3 CW01	475-650 k ₁ > 62-91%			280 ± 50µm	2.0 ± 0.2mm
VIS 500 BC4	K1 > 02-9176	480-550		280 ± 50µm	2.0 ± 0.2mm
VIS 500 BC4		k ₁ > 58-76%		200 1 30μπ	2.0 1 0.211111
VIS 500 BC4 CW01		480-550		280 ± 50µm	2.0 ± 0.2mm
		k ₁ > 65-83%		_00 _ 00µ	
VIS 600 BC4		500-720		280 ± 50µm	2.0 ± 0.2mm
		k1> 60-84%			
VIS 600 BC4 CW01		500-720		280 ± 50µm	2.0 ± 0.2mm
		k1> 65-90%			
VIS 700 BC3	550-900			220 ± 50µm	2.0 ± 0.2mm
VIIC 700 DO2 OW02	k ₁ > 77-86%			220 . 50	0.0 . 0.0
VIS 700 BC3 CW03	550-900 k ₁ > 84-93%			220 ± 50µm	2.0 ± 0.2mm
VIS 700 BC4	600-1,000	600-850		220 ± 50µm	2.0 ± 0.2mm
VIO 700 BO4	k ₁ > 78-88%	k ₁ > 78-87%		220 1 30μπ	2.0 ± 0.211111
VIS 700 BC4 CW02	600-1,000	600-850		220 ± 50µm	2.0 ± 0.2mm
	k ₁ > 84-95%	k1> 84-93%			
VISIR		550-1,500	600-1,200	260 ± 50µm	2.0 ± 0.2mm
		k1> 57-85%	k1> 67-84%		
VISIR CW02			600-1,200	260 ± 50µm	2.0 ± 0.2mm
			k ₁ > 71-88%		
IR 950 BC4	600-1,320	800-1,100		220 ± 50µm	2.0 ± 0.2mm
ID OFO DOA OMOO	k ₁ > 80-88%	k1> 85-87%		200 . 50	0.0 . 0.0
IR 950 BC4 CW02	600-1,150 K ₁ > 82-94%	800-1,100 k ₁ > 90-94%		220 ± 50µm	2.0 ± 0.2mm
IR 1100 BC4	650-1.700	750-1.400	900-1,200	220 ± 50µm	2.0 ± 0.2mm
1100 004	k ₁ > 80-88%	k ₁ > 83-87%	k ₁ > 85-87%	220 1 30μπ	2.0 1 0.211111
IR 1100 BC4 CW02	650-1,150	750-1,150	900-1,150	220 ± 50µm	2.0 ± 0.2mm
	k1> 86-93%	K ₁ > 87-93%	K ₁ > 87-93%		
IR 1300 BC5	650-2,000	750-1,800	850-1,600	220 ± 50µm	2.0 ± 0.2mm
	k1> 76-87%	k1> 80-87%	k1> 82-86%	-	
Laserline Nd:YAG BC4		355, 532, 1,064 k ₁ >37, 50, 79%		270 ± 50μm	2.0 ± 0.2mm
NIR	1,000-3,000	1,200-3,000		250 ± 65µm	2.0 ± 0.2mm
	1,000-2.70	00 k ₁ > 77%	7		(other
		00 k ₁ > 70%			transmittance
MIR	1,500-5,000	2,000-4,500		200 ± 50μm	specification)
IVIIIX	k ₁ > 35-90%	2,000-4,500 k ₁ > 65-90%		200 ± ουμπ	

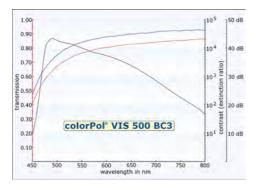
¹⁾ The contrast ratio is defined to be k1/k2, where k1 is the transmittance beam passing the filter and k2 is the transmittance of a polarized beam blocked by the filter.

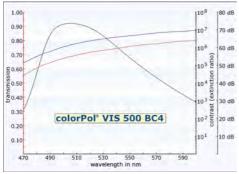
Standard polarizers

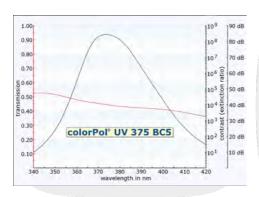
diameter

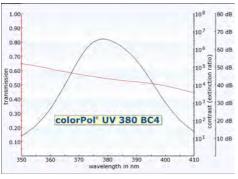
Laminated round polarizers

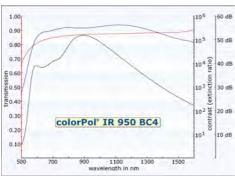
Mounted polarizers

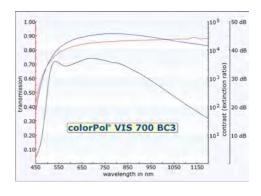



Diameter [mm]	Clear aperture [mm]
12.5 - 0.2	11.2
12.7 - 0.2 (½")	11.4
25.0 - 0.2	22.5
25.4 - 0.2 (1")	22.9

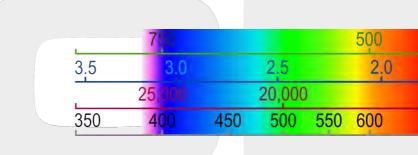

Diameter [mm]	Thickness [mm]	Clear aperture [mm]		
12.5 - 0.2	2.0 ± 0.2	11.2		
25.0 - 0.2	2.0 ± 0.2	22.5		
wavefront distortion < λ/4 at 633 nm				

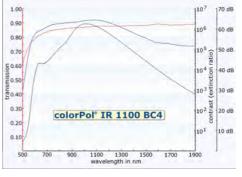

Diameter [mm]	Clear aperture [mm]	Length [mm]
12.5 e8	8.1	5 or 7
12.7 (1/2") e8	8.1	5 or 7
25.0 e8	20.8	5 or 10
25.4 (1") e8	20.8	5 or 10

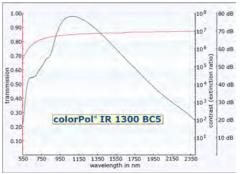

Other diameters are available on request.

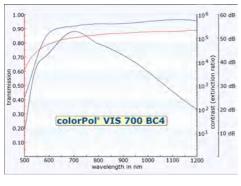


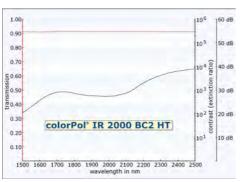


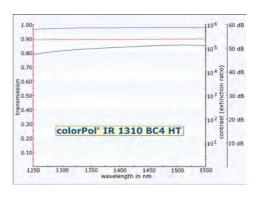


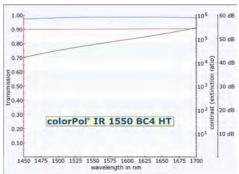


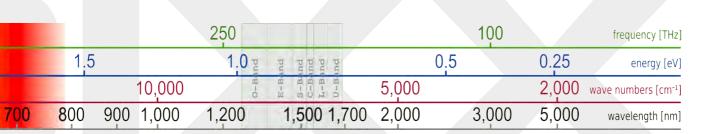


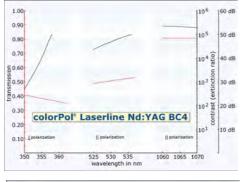


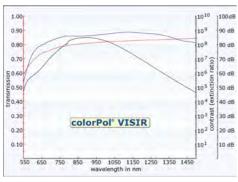


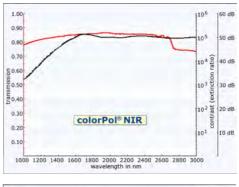


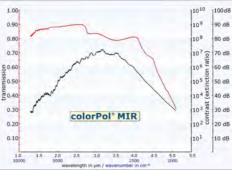




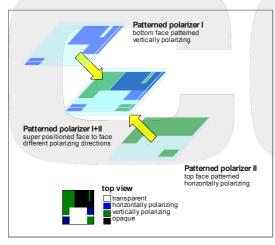








Transmittance — Transmittance with antireflection coating — contrast (extinction ratio)

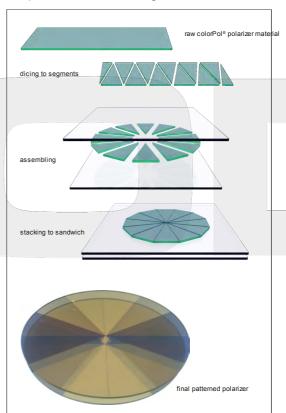

Patterned polarizers

In difference to a common linear polarizer, which provides the same optical properties over the whole clear aperture, a patterned polarizer is subdivided into segments. The segments may have different optical properties like the orientation of the polarization axis or wavelength range, or can be opaque or transparent. Size, shape and number of segments with different optical properties determine which of CODIXX's unique manufacturing technology is applicable.

Lithographical technology

The polarization of colorPol® polarizers is caused by elongated silver nano particles, which are embedded into the glass only in a shallow depth. This specific design offers the possibility to remove these nano particles by surface etching. With lithography, this can be done selectively.

A patterned polarizer with regions of either transparent or linear polarizing properties is the result. The shape of the regions can be randomly chosen, the resolution can be as high as 30 μ m at still reasonable costs. The polarization axis of all regions as well as the wavelength range is same.


To create a polarizer with regions of different polarization axes, at least two of the polarizers, which were patterned as described above, must be stacked on top of each other (see sketch above). The more different orientations of the polarization axis are needed, the more planes must be stacked. The different height positions of the planes may cause a parallax.

If used as an analyzer, the scattering of the nano particles may lead to a decrease of the polarizers contrast and some crosstalk in rare cases.

Mosaic technology

colorPol® is well suited for this classical method of manufacturing patterned polarizers. The thin glass substrates can be diced precisely with for example wafer saws.

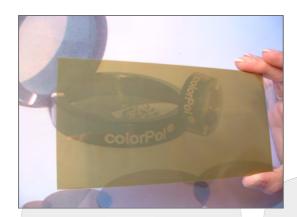
Different polarization directions as well as different wavelength ranges can be chosen for each segment. On the other hand, the size, shape and number of segments is limited.

After the precise side-by-side arrangement, the mosaic is sandwiched between two carrier substrates.

	Unlaminated	Laminated ¹⁾	
Optical Parameter			
Transmitted wavefront distortion (TWD) at 633 nm over an inspection area of Ø10mm	< 3 λ	< λ/4	
Beam deviation	< 20 arc min.	< 1 arc min.	
Accuracy of polarization axis to indicated edge ²⁾	< 0.		
Acceptance angle 3), 4)	± 2	0°	
Refractive index at 633 nm (RI) 57	1.525 ±	0.005	
Cosmetic Parameter			
Surface imperfections 6)	ISO 10110-07: 5/2 x 0.04 per Ø10mm MIL-O-13830A: S/D 40/20		
Mechanical Parameter			
Clear aperture (CA) Edge chips 7)	90% for parts < 20 x 20 mm² 95% for parts ≥ 20 x 20 mm² 0.05 mm to 0.2 mm, dependent upon part size		
Specific weight	< 0.05 mm (< 0.05 mm (2.5 ± 0.1	on request	
Coefficient of elasticity E	70 ± 5 kN/mm ²	9/11111	
·	70 ± 3 KN/IIIII		
Physical Parameter Coefficient of thermal expansion (CTE)	8.1 ± 0.3 x 10 ⁻⁶ K ⁻¹ (0-100°C)		
Specific heat	1.0 ± 0.1 J/gK		
Thermal conductivity	0.94 ± 0.05 W/mK		
Operation Limits			
Laser damage threshold (LDT) a) Continuous wave (CW)	10 W/cm² continuous block 25 W/cm² continuous pass	1 W/cm² continuous block 5 W/cm² continuous pass	
b) Pulsed	12 MW/cm² pulse peak power (equivalent of about 1 µJ/cm² pulse power density)	1 MW/cm² pulse peak power (equivalent of about 100 nJ/cm² pulse power density)	
Operating temperature range	up to +400°C	UV types: -20°C to +80°C all other: -20°C to +120°C	
Durability			
Thermal cycle	-40°C to +80°C, 200 cycles (DIN EN 60068-2-14 method Na)		
Humid storage	85°C, 85% rel. humidity, 1,000 h according to Telcordia GR-1221-CORE		
UV-stability	UV-stability 20 mW/cm ² at 60 h irradiation without any degradation		
Chemical resistance	colorPol® polarizers are insensitive to most organic and cleaning solvents, acids and bases® and distilled water.		

colorPol® polarizers follow completely the international RoHS, REACH and PFOS regulations.

laminated, ground and polished
 less tolerance available upon request
 exceeding this angle may lower contrast and transmittance
 AR coating may limit this angle


 ⁵⁾ RI for other wavelengths on request
 ⁶⁾ other quality grades available on request
 ⁷⁾ other specifications available on request
 ⁸⁾ AR coating may limit the resistivity

CODIXX

CODIXX is a German share holder company founded in 1998.

After a period of technology development and building up the production equipment, CODIXX has started the production of a new family of dichroic glass polarizers in 2002.

The production site is located in Barleben near Magdeburg. Since the end of 2002 the company has been manufacturing standard and customized polarizers for a variety of applications.

colorPol® distributors

Europe

France

LOT-Oriel France ZAC de la Bonde 15 rue du Buisson aux Fraises Bâtiment C

91300 Massy France

Phone: +33 1 69 19 49 49 Fax: +33 1 69 19 49 30

Internet/email: www.lot-oriel.com contact@lot-oriel.fr

United Kingdom and Ireland

Elliot Scientific Ltd.
3 Allied Business Centre
Coldharbour Lane
Harpenden, Hertfordshire

AL5 4UT United Kingdom

Phone: +44 1582 766300 Fax: +44 1582 766340

Internet/email:

www.elliotscientific.com sales@elliotscientific.com

North America

USA and Canada

LASER COMPONENTS USA, Inc. 9 River Road Hudson, NH 03051 USA

Phone: +1 603 821 7040 Fax: +1 603 821 7041

Internet/email:

www.laser-components.com info@laser-components.com

Asia / Asia-Pacific

China

FOCtek Photonics, Inc. No. 8, the 7th Road, Phase II of Minhou Tieling Industrial District Fuzhou, Fujian 350100 China

Phone: +86 591 8376 7816 Fax: +86 591 8376 7817

Internet/email: www.foctek.net sales@foctek.com Titan Electronical Optics Ltd. Rm. A0803, ZhiChun Building, No. 118, ZhiChun Road, Haidian District 100086 Beijing

China

Phone: +86 02 26552233 Fax: +86 02 26552233

Internet/email: www.teo.com.tw sales@teo.com.tw

Japan

FUJITOK Corporation 1-9-16 Kami-Jujo, Kita-Ku 114-0034 Tokyo Japan

Phone: +81 3 3909 1791 Fax: +81 3 3908 6450

Internet/email: www.fujitok.co.jp opt@fujitok.co.jp

Singapore and Malaysia

Acexon Technologies Pte Ltd. 21 Bukit Batok Crescent WCEGA Tower #20-83 Singapore 658065

Phone: +65 6565 7300 Fax: +65 6565 7005

Internet/email: www.acexon.com sales@acexon.com

Israel

ROSH Electroptics P.O.B 2667 42122 Netanya Israel

Phone: +972 (0)9 8627401 Fax: +972 (0)9 8616185

Internet/email: www.roshelop.co.il info@roshelop.co.il

All other countries and regions

CODIXX AG Steinfeldstraße 3 39179 Barleben Germany

Phone: +49 3 92 03 9 63 0 Fax: +49 3 92 03 9 63 33

Internet/email: www.codixx.de colorPol@codixx.de

CODIXX AG

Steinfeldstraße 3 39179 Barleben Germany

Phone: +49 39203 963 0 Fax: +49 39203 963 33

Email: colorPol@codixx.de Website: <u>www.codixx.de</u>

